56 research outputs found

    Lie-Algebraic Characterization of 2D (Super-)Integrable Models

    Get PDF
    It is pointed out that affine Lie algebras appear to be the natural mathematical structure underlying the notion of integrability for two-dimensional systems. Their role in the construction and classification of 2D integrable systems is discussed. The super- symmetric case will be particularly enphasized. The fundamental examples will be outlined.Comment: 6 pages, LaTex, Talk given at the conference in memory of D.V. Volkov, Kharkhov, January 1997. To appear in the proceeding

    Bayesian Probabilities and the Histories Algebra

    Full text link
    We attempt a justification of a generalisation of the consistent histories programme using a notion of probability that is valid for all complete sets of history propositions. This consists of introducing Cox's axioms of probability theory and showing that our candidate notion of probability obeys them. We also give a generalisation of Bayes' theorem and comment upon how Bayesianism should be useful for the quantum gravity/cosmology programmes.Comment: 10 pages, accepted by Int. J. Theo. Phys. Feb 200

    Classicality of quantum information processing

    Get PDF
    The ultimate goal of the classicality programme is to quantify the amount of quantumness of certain processes. Here, classicality is studied for a restricted type of process: quantum information processing (QIP). Under special conditions, one can force some qubits of a quantum computer into a classical state without affecting the outcome of the computation. The minimal set of conditions is described and its structure is studied. Some implications of this formalism are the increase of noise robustness, a proof of the quantumness of mixed state quantum computing and a step forward in understanding the very foundation of QIP.Comment: Minor changes, published in Phys. Rev. A 65, 42319 (2002

    Maximally Causal Quantum Mechanics

    Get PDF
    We present a new causal quantum mechanics in one and two dimensions developed recently at TIFR by this author and V. Singh. In this theory both position and momentum for a system point have Hamiltonian evolution in such a way that the ensemble of system points leads to position and momentum probability densities agreeing exactly with ordinary quantum mechanics.Comment: 7 pages,latex,no figures,to appear in Praman

    Decoherence : An irreversible Process

    Get PDF
    A wide-ranging theory of decoherence is derived from the quantum theory of irreversible processes, with specific results having for their main limitation the assumption of an exact pointer basis.Comment: 9 page

    Comparing Formulations of Generalized Quantum Mechanics for Reparametrization-Invariant Systems

    Full text link
    A class of decoherence schemes is described for implementing the principles of generalized quantum theory in reparametrization-invariant `hyperbolic' models such as minisuperspace quantum cosmology. The connection with sum-over-histories constructions is exhibited and the physical equivalence or inequivalence of different such schemes is analyzed. The discussion focuses on comparing constructions based on the Klein-Gordon product with those based on the induced (a.k.a. Rieffel, Refined Algebraic, Group Averaging, or Spectral Analysis) inner product. It is shown that the Klein-Gordon and induced products can be simply related for the models of interest. This fact is then used to establish isomorphisms between certain decoherence schemes based on these products.Comment: 21 pages ReVTe

    Partial waves of baryon-antibaryon in three-body B meson decay

    Get PDF
    The conspicuous threshold enhancement has been observed in the baryon-antibaryon subchannels of many three-body B decay modes. By examining the partial waves of baryon-antibaryon, we first show for B- -->pp-bar K- that the pK- angular correlation rules out dominance of a single pp-bar partial wave for the enhancement, for instance, the resonance hypothesis or the strong final-state interaction in a single channel. The measured pK- angular correlation turns out to be opposite to the naive expectation of the short-distance picture. We study the origin of this reversed angular correlation in the context of the pp-bar partial waves and argue that NN-bar bound states may be the cause of this sign reversal. Dependence of the angular correlation on the pp-bar invariant mass is very important to probe the underlying problem from the experimental side.Comment: 16 pages, 9 figures, the version for journal publicatio

    Time-of-arrival probabilities for general particle detectors

    Full text link
    We develop a general framework for the construction of probabilities for the time of arrival in quantum systems. The time of arrival is identified with the time instant when a transition in the detector's degrees of freedom takes place. Thus, its definition is embedded within the larger issue of defining probabilities with respect to time for general quantum transitions. The key point in our analysis is that we manage to reduce the problem of defining a quantum time observable to a mathematical model where time is associated to a transition from a subspace of the Hilbert space of the total system to its complementary subspace. This property makes it possible to derive a general expression for the probability for the time of transition, valid for any quantum system, with the only requirement that the time of transition is correlated with a definite macroscopic record. The framework developed here allows for the consideration of any experimental configuration for the measurement of the time of arrival and it also applies to relativistic systems with interactions described by quantum field theory. We use the method in order to describe time-of-arrival measurements in high-energy particle reactions and for a rigorous derivation of the time-integrated probabilities in particle oscillations.Comment: 27 pages, latex. Changed title and added a conclusions section. Version to appear in PR

    Stochastic Theory of Relativistic Particles Moving in a Quantum Field: II. Scalar Abraham-Lorentz-Dirac-Langevin Equation, Radiation Reaction and Vacuum Fluctuations

    Get PDF
    We apply the open systems concept and the influence functional formalism introduced in Paper I to establish a stochastic theory of relativistic moving spinless particles in a quantum scalar field. The stochastic regime resting between the quantum and semi-classical captures the statistical mechanical attributes of the full theory. Applying the particle-centric world-line quantization formulation to the quantum field theory of scalar QED we derive a time-dependent (scalar) Abraham-Lorentz-Dirac (ALD) equation and show that it is the correct semiclassical limit for nonlinear particle-field systems without the need of making the dipole or non-relativistic approximations. Progressing to the stochastic regime, we derive multiparticle ALD-Langevin equations for nonlinearly coupled particle-field systems. With these equations we show how to address time-dependent dissipation/noise/renormalization in the semiclassical and stochastic limits of QED. We clarify the the relation of radiation reaction, quantum dissipation and vacuum fluctuations and the role that initial conditions may play in producing non-Lorentz invariant noise. We emphasize the fundamental role of decoherence in reaching the semiclassical limit, which also suggests the correct way to think about the issues of runaway solutions and preacceleration from the presence of third derivative terms in the ALD equation. We show that the semiclassical self-consistent solutions obtained in this way are ``paradox'' and pathology free both technically and conceptually. This self-consistent treatment serves as a new platform for investigations into problems related to relativistic moving charges.Comment: RevTex; 20 pages, 3 figures, Replaced version has corrected typos, slightly modified derivation, improved discussion including new section with comparisons to related work, and expanded reference
    • …
    corecore